A Fuzzy Neural Network Approach for Contractor Prequalification

نویسندگان

  • Lam
  • Tiesong Hu
  • S. Thomas Ng
  • Martin Skitmore
  • Cheung
چکیده

Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(طراحی مدل نوین پشتیبانی تصمیم‌گیری جهت ارزیابی و انتخاب پیمانکاران عمرانی در مناقصه‌ها (در ایران

Contractor evaluation and selection is one of the most important decision making problems that many regulations and methods have been introduced for it. In Iran, "Planning and Management Organization" is responsible for classification and prequalification of contractors and due to this responsibility, this organization edit the Contractors Classification and Prequalification Regulation regularl...

متن کامل

Prequalification of Construction Contractor using a FAHP

Analytical hierarchy process (AHP) as multiple criteria decision making tools can be used in the problems with spatial nature like selection of construction contractor. In this study the application of AHP and its weakness and strength and ultimately the fuzzy modified analytical hierarchy process (FAHP) is proposed after the concept of fuzziness, uncertainty and vagueness. A triangular fuzzy u...

متن کامل

Numerical solution of fuzzy linear Fredholm integro-differential equation by \fuzzy neural network

In this paper, a novel hybrid method based on learning algorithmof fuzzy neural network and Newton-Cotesmethods with positive coefficient for the solution of linear Fredholm integro-differential equation of the second kindwith fuzzy initial value is presented. Here neural network isconsidered as a part of large field called neural computing orsoft computing. We propose alearning algorithm from ...

متن کامل

Classifying Construction Contractors Using Unsupervised-Learning Neural Networks

Contractor prequalification involves the screening of contractors by a project owner to determine their competence to complete the project on time, within budget, and to expected quality standards. The process of prequalification involves a large number of contractors, each being represented by many attributes. A neural network model was applied to aid in the prequalification process by classif...

متن کامل

An Adaptive Fuzzy Neural Network Model for Bankruptcy Prediction of Listed Companies on the Tehran Stock Exchange

Nowadays, prediction of corporate bankruptcy is one of the most important issues which have received great attentions among academia and practitioners. Although several studies have been accomplished in the field of bankruptcy prediction, less attention has been devoted for proposing a systematic approach based on fuzzy neural networks.  The present study proposes fuzzy neural networks to predi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010